Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 325: 138397, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36925014

RESUMO

The feasibility and potential mechanisms of the self-alkali activation brought by municipal solid waste incineration (MSWI) fly ashes to the self-cementation of arsenic-contaminated soils were quantitatively evaluated and comprehensively analyzed to avoid the additional application of the alkali activators and binder materials traditionally. The employment of the two kinds of precursor materials achieved the self-alkali-activated self-cementation ('double self') under ambient conditions. The largest compressive strength (MPa) of 25.64 and lowest leaching toxicities (mg/L) of 21.05, 2.86, 0.08, 0.02, 2.05, and 0.34 for Zn, Cu, Cr, Cd, Pb, and As were obtained in the solidified matrix. Geopolymerization kinetics of the 'double self' cementation can be mathematically fitted by the Johnson-Mehl-Avrami-Kolmogorov model. CaClOH and halite in the MSWI fly ashes set up the self-alkali activation by reacting with the kaolinite and quartz in soils contaminated with arsenic by forming layered hydration and three-dimensional geopolymerization products to push for self-cementation.


Assuntos
Arsênio , Metais Pesados , Resíduos Sólidos/análise , Cinza de Carvão , Incineração/métodos , Álcalis , Cimentação , Metais Pesados/análise
2.
Waste Manag ; 161: 166-177, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889123

RESUMO

The solidification/stabilization technique recommended for the disposal of municipal solid waste incineration (MSWI) fly ashes in developed countries was inappropriate for the treatment in most developing counterparts. In this study, the diatomite and MoS2 nanosheets were synergistically employed to activate the self-alkali-activated cementation of the MSWI fly ashes to achieve efficient solidification, the immobilization of heavy metals (HMs), and the inhibition of chloride release. The compressive strength of 28.61 MPa and the leaching toxicities (mg/L) of Zn, Pb, Cu, Cd, and Cr of 2.26, 0.87, 0.5, 0.06, and 0.22 were obtained from the hardened mortars. Diatomite significantly influenced the self-alkali-activated cementation of the MSWI fly ashes while MoS2 nanosheets played both roles in intensifying the stabilization of HMs and strengthening the binding process by inducing the formation of sodalite and kaolinite, enhancing the growth rates of nucleation, and transforming the layered cementation to the partial and full three-dimensional cementation in the hardened matrix. This study not only verified the feasibility of diatomite and MoS2 in activating the self-alkali-activated cementation of the MSWI fly ashes but also supplied a reliable technique for the harmless disposal and efficient utilization of MSWI fly ashes in developing countries.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Incineração/métodos , Cinza de Carvão , Eliminação de Resíduos/métodos , Molibdênio , Álcalis , Cimentação , Material Particulado , Carbono , Metais Pesados/análise
3.
Environ Res ; 217: 114911, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427641

RESUMO

Nonthermal plasma (NTP) irradiation was employed to adjust the morphological structures and valence distribution of ferromanganese (Fe-Mn)-based binary hydro (oxide) to enhance the heterogeneous adsorption of uranyl ions. The output voltage and the liquid-plate distance played a more vital role among the NTP factors in the irradiation system in influencing the polyvalent Fe-Mn binary hydro (oxide) (poly-Fe-Mn). The formation of plates, flakes, and nanoscale nodules was specifically observed, which caused more pores and fractures in the poly-Fe-Mn binary hydro (oxide). The poly-Fe-Mn performed explicitly better in the adsorption of uranium ions in comparison with the counterpart of the Fe-Mn, which was appropriately fitted by the pseudofirst-order kinetic and Elovich models. Maximum equilibrium adsorption capacities of 663.92 and 923.45 mg/g were obtained for the Fe-Mn and poly-Fe-Mn binary hydro (oxides) toward U ions in the orthogonal design, respectively. The maximum monolayer adsorption capacity achieved by the fitting of the Langmuir model was 1091.10 mg/g. Both physisorption and chemisorption contributed to the heterogeneous process of the poly-Fe-Mn toward uranium ions. The employment of NTP irradiation changed the monolayer adsorption of the traditional Fe-Mn materials and diversified the reaction mechanisms between the interface of the Fe-Mn materials and uranium ions. The elements, including O, N, and U exhibited higher compatibility and overlapped in the samples. The highly effective capture of uranium ions from the solution by the poly-Fe-Mn binary hydro (oxide) was mainly related to the chemical deposition of O and N radicals.


Assuntos
Urânio , Purificação da Água , Óxidos/química , Águas Residuárias , Concentração de Íons de Hidrogênio , Adsorção , Íons , Cinética
4.
J Hazard Mater ; 424(Pt B): 127441, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673396

RESUMO

The natural ecosystem will continually deteriorate for decades by the leakage of Cs and Sr isotopes. The exploration of the new materials or techniques for the efficient treatment of radioactive wastewater is critically important. In this study, a dielectric barrier discharge (DBD) configuration was constructed to operate the non-thermal plasma (NTP). The NTP was incorporated into the synthesis of polyaluminum chloride (PAC) in two different procedures to intensify the synthesis of PAC (NTP-PAC) and enhance the further removal of Cs and Sr from wastewater. The employment of NTP in two procedures both had significantly changed the physicochemical characteristics of PAC materials, which facilitated the further adsorption application of NTP-PAC on the treatment of Cs+ and Sr2+. Different molecular, morphological, and adsorption characteristics were confirmed to the NTP-PAC materials. The heterogeneous adsorption of the NTP-PAC can be appropriately fitted by both the pseudo-first-order kinetic model and the Elovich model. Both physisorption and chemisorption reaction mechanisms were ensured for the heterogeneous adsorption of the NTP-PAC material towards Cs+ and Sr2+, which guaranteed the excellent adsorption performance of NTP-PAC materials compared to PAC. The electron collisions caused by NTP with alum pulp created highly reactive growth precursors and intensified the nucleation and hydrolysis polymerization of PAC. The employment of NTP explicitly broadens the reaction pathways between PAC and cationic contaminants in the aqueous environment, which expands the application area of PAC materials in environmental sustainability.


Assuntos
Gases em Plasma , Adsorção , Hidróxido de Alumínio , Ecossistema
5.
Waste Manag ; 126: 377-387, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819901

RESUMO

A bio-electrochemically (BE) recycling platform was assembled to recover Li and Co from the cathodic materials of spent LIBs in one integrated system. The BE platform consists of three microbial-fuel-cell (MFC) subsystems, including MFC-A, MFC-B, and MFC-C. Co and Li were smoothly recovered from the cathodic materials in the assembled platform. The initial pH and the loading ratios of LiCoO2 both significantly influenced the leaching efficiencies of Li and Co in MFC-A. Approximately 45% Li and 93% Co were simultaneously released through the reduction of LiCoO2 at the initial pH of 1 and the loading ratios of LiCoO2 of 0.2 g/L. The (NH4)2C2O4-modified granular activated carbons (GAC) with a thickness of 1.5 cm was favorably stacked adjacent to the cathode of the MFC-B system. About 98% of removal efficiency (RECo1) and 96% of recovery efficiency (RECo2) of Co were achieved in MFC-B under optimum conditions. The dosing concentration of Li+ lower than 2 mg/L and the (NH4)2CO3 of 0.01-0.02 M were conducive to enhancing the recovery of Li from raffinate and guaranteed the higher power output and coulombic efficiencies in MFC-C. The continuous release of CO2 caused by exoelectrogenic microorganisms on the biofilm facilitated the precipitation of Li2CO3.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Íons , Reciclagem
6.
Ecotoxicol Environ Saf ; 213: 112003, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588188

RESUMO

A green rust-coated expanded perlite (GR-coated Exp-p) microelectrode was synthesized and incorporated into a column-mode three-dimensional electrokinetic (3D-EK) platform to effectively pursue a continuous Cr(VI) removal from the aqueous solution. Brucite-like layers of GR were decorated onto the Exp-p material. The molar ratio of Fe(II) to Fe(III) played a most vital role among the three synthesis factors in influencing the performance of the particle electrode. For the equilibrium adsorption experiments, the target maximum adsorption capacity of 122 mg/g was predicted by a target optimizer and desirability function at the conditions following the pH of 4.7, the initial concentration of 172.4 mg/L, the dosage of 0.28 g/L, and the temperature of 28.96 °C, respectively. SO42-, Cl-, and NO3- fiercely competed with Cr(VI) anions in the acidic conditions for the locally positive sites. A low concentration and a slow flow were favored in the column-mode 3D-EK platform. The pseudo-first-order and Langmuir models were suitable for describing the kinetics and isotherms of the adsorption process, respectively. Cr(VI) anions were electrostatically attracted to the silanol groups and GR surface of the adsorbent, subsequently reduced in both heterogeneity and homogeneity, and finally immobilized by coordinating with silanediol groups and silanetriol groups.


Assuntos
Cromo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Óxido de Alumínio , Ânions , Eletrodos , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética , Dióxido de Silício , Temperatura , Água , Poluentes Químicos da Água/análise
7.
Chemosphere ; 241: 125069, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31614313

RESUMO

An inadvertent leakage of 90Sr into the environment can induce an easy accumulation in biosphere and cause a continuous radiation to the surrounding ecosystem. In this study, sodium hexametaphosphate (Na6O18P6) was employed to modify the blast furnace slags (BFS) to enhance the chemical stabilization of Sr2+ ions in the BFS-based cementitious materials. Microwave irradiation (MW) was used to further increase the binder activity of BFS samples and strengthened the mechanical strengths and durability of BFS-based blocks. A combination of experimental factors including the mass ratio of Na6O18P6 to BFS-Sr0.1 of 15%, the ratio of solid to liquid of 1:4 mg/L, the output power of 650 W, and the activation time of 3 min was most conductive to achieving an optimal microwave-irradiation process. Four extraction solutions were sorted by their leaching abilities following as MgSO4 solution > H2SO4 solution > CH3OOH solution > deionized (DI) water based on their leaching results. Compared with microwave irradiation, an addition of Na6O18P6 to BFS samples obtained a better compressive strength for BFS-based blocks. However, a microwave-irradiation treatment was more effective in improving the resistances of blocks to gamma irradiation and thermal-thaw changes. Exposing to gamma irradiation over 6 months and enduring to thermal-thaw tests over 15 cycles, the microwave-treated blocks only lost 3.29% and 2.23% of leaching removal efficiencies in deionized water, respectively. Microwave irradiation increased the mechanical strengths of BFS-based blocks and inhibited leaching of Sr2+ ions from matrices mainly by strengthening hydration reactions and Sr2+ encapsulation.


Assuntos
Micro-Ondas , Modelos Químicos , Fosfatos/química , Estrôncio/química , Álcalis , Força Compressiva , Ecossistema , Água
8.
J Environ Manage ; 252: 109642, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586745

RESUMO

Hexametaphosphate intercalated green rust (hexa-P GR) was fabricated by a coprecipitation process in an anaerobic environment to improve the adsorption of hexa-P GR for Cr(VI) and the total Cr under various aqueous conditions. Three kinetic models including the pseudo-first-order, intraparticle, and Elovich were appropriate in describing the adsorption of hexa-P GR towards Cr(VI) and the total Cr. The maximum mono-layer adsorption capacities (mg/g) of hexa-P GR for Cr(VI) at pH of 2 and 7 were 87.64 and 92.25, respectively, with the theoretical maximum capacity (mg/g) of 52.73 being obtained at pH of 7. Some competing cations existing in solutions such as Al3+, Ca2+, and Mg2+ would consume more hexa-P GR to remove Cr species. The neutral and weak alkaline environment was conducive to the hexa-P GR reuse, while the strong alkaline environment was beneficial to the removal of the total Cr. The orthogonal variables including the initial pH, the flow rate, and the Cr(VI) concentration all significantly influenced Cr removal. The sequences of reaction pathways referring to the adsorption of hexa-P GR differently occurred in various pH conditions.


Assuntos
Cromo , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...